Eye Tracking in Assessing Computational Thinking

ID: 52460 Type: Roundtable
  1. Abdu Arslanyilmaz and Bonita Sharif, Youngstown State University, United States

Tuesday, March 27 11:30 AM-12:30 PM Location: Edison Ballroom D View on map

Presider: Laurie Sharp, West Texas A&M University, United States

Abstract: Multiple methodologies have been utilized to assess learning of computational thinking (CT) including student-created artifacts, interviews with students about their artifacts, tests consisting of multiple-choice, fill-in-blank, open-ended items, jumbled blocks or lines to put in correct orders, and matching, debugging, and code tracing items, qualitative analyses of classroom observation, students’ grades and enrollment data, interviews with teachers, and design scenarios. However, these assessment methods do not provide a complete picture about students’ thinking process for a full report on their learning of CT. Eye-tracking technology may be used as an objective and complementary instrument giving information about students’ thinking process as well as technical progress as they are involved in each CT competency. However, no prior research examined eye-tracking technology as an assessment instrument in learning of core CT concepts and fluency of development in CT practices. Therefore, this study will present a novel assessment method utilizing eye-gaze data collected via eye-tracking technology.


Conference attendees are able to comment on papers, view the full text and slides, and attend live presentations. If you are an attendee, please login to get full access.